The third day of the ICCB/ECCB 2015 (here are notes from first and second days) was packed with sessions about citizen science and local knowledge throughout the day (so this post is very very long!). It started with two sessions on citizen science / public participation in science*that included the following talks:
Citizen science online: Producing high-quality data from camera trap images (Alexandra Swanson, University of Oxford) looking at a crowdsourcing process – the growth of use of technology in conservation produce huge amount of data – images are especially an issue as they are produced from camera traps, drones etc. and difficult to analyse with computers. She describe snapshot Serengeti – in which many camera traps are used: half a million images a year. They teamed with Zooniverse to set a system for volunteer classification. The website allow people to classify without being experts, without limitation of participation other than web connection. They had 1m classifications in the first 3 days of operations. To get best data possible, each image is sent to multiple people and there is no ‘I don’t know’ so to ensure that everything is being used. Looking at multiple users we can see the level of agreement between them. When people disagree on what they’ve see, there will be high level of disagreement in their classification. The aggregate results over multiple volunteers, then they have certainty metrics (how confident the final answer is) and compare a subset with expert answers. People are 97% correct – agreement with experts’ analysis is very common. Accuracy varies by species – some species are more commonly missed (false*negative) and reported when they are not there (reported when not there). Rhinos, for example, suffer from high false positives (people want to see them). To improve classification, analysed errors against total pictures and found that rare species are harder than others – and moderate erros for these rare species is the purpose of camera trapping projects. False negatives are harder to identify. The classification by multiple users allows the development of a disagreement metric and they can see in wrong images high level of disagreement. Below the 0.75 disagreement score is 98.2% accurate. Therefore it can be used to target volunteer effort. They calculated dynamic improvement in quality as the number of classifiers increase – for more difficult images, you use more volunteers… conclusion: can dynamically target the volunteers and expert effort to make the most of the effort. Zooniverse is increasing the potential of starting new citizen science projects.
Corporate citizen science; A novel tool for tackling environmental sustainability? – (Jenny Cousins, Earthwatch Institute). *Citizen Science has multiple goals, and the interaction with the corporate sector is important for EarthWatch as they have a critical role to play in different activities. Freshwater Watch is part of a wider HSBC programme, and bring a global community of scientists and participants – 5000 citizen science (HSBC employees mostly) in 32 locations across the world. The participants fill that they are part of a global project. Employees join for a day, and then collect data every 3 months of a local freshwater locations (e.g. ponds) – they want people to be engaged and collect data, but also to think of water footprint in daily life. The data become part of local and global data – there are some aims to make the data widely available and use for academic publications and local management plans. EarthWatch evaluates how well people learn from the day, and their commitment to the project. They look at how people participate over time – including longer ‘stories’ from participants to see their journey. There are also signs of behaviour change outside work. The benefits of the partnership – funding global research programme, unique dataset, and personal and corporate outcomes. There are challenges in quality control, multi cultural aspects and continuity (only 21% continue to contribute data).*The sustainability leadership citizen science programme is 5 days immersive programme for senior staff – 1000 senior manages, with 12,000 hours of data collection and learn about climate change and how it is relevant to their work. The hope is that participants will be integrating an understanding of climate change into their work. For participants is help to connect to nature, and change their perspective on life. Working with scientists is a key to increase knowledge and awareness, and changes in behaviour personally and at corporate levels. Majority of participants led to development and implementation of sustainability strategy – reducing energy, waste, use of renewable energy etc. The challenge that they identified is how to support actions in the workplace, and they created an online community of practice to support such change. Corporate projects can be immersive and aimed at senior staff, or higher volume but less engagement. Face to face training is a key to commitment. Training does not always translate into action – so they are looking at the barriers and identifying the factors that will help making a better change. They also want to understand and measure the wider and longer term outcomes.
Local people count: Using citizen scientists to monitor fruit bat populations (Tammy Mildenstein, Cornell College) covered citizen science in the Philippines, and how data can be used. For her, citizen science has multiple goals – build capacity, increase awareness, local knowledge can help in improving programme. In the Philippines people are involved in conservation research from limited engagement*to higher level of monitoring – but only rarely in analysis. Depending on the question, can we trust citizen science data? Her case is about Flying Foxes which are largest bats, they are threatened and Old World fruit bats are not covered well in the literature. Monitoring give baseline trend information, and also identify conservation priorities, and feedback to conservation management. It also provide community-based harvest regulations (people hunt the bats) and local monitor provide the ability to manage the population. We tend to monitor to identify population trends – the power to detect is based on the population size, but we can deal with survey effort and survey error. So trying to increase survey effort and reduce the error. From 20 years of data, they compared the survey data that was gathered, and the error was calculated as difference in mean count among groups of observers, and they also compared different levels of skills – from biologists, bat hunters, to inexperienced helpers. Anyone above 4 surveys is classified as expert, forest works (hunters of workers) and everyone else. The error among experts – 2.9% error, forest workers 7.0% error and for untrained counters – almost 30% error. In terms of identifying the impact of the effort, they simulated a trend, and then simulated count assuming that they can get with these errors from different participants. Looking at the untrained participants – they realised that over longer period of monitoring, there is no error in trend detection for more experienced monitors. Conclusions: error rates to not affect much trend detection – citizen scientists help in increasing survey effort (more frequent monitoring and spatially too).
Essential Biodiversity Variables – and the emerging role of citizen science Mark Chandler (EarthWatch) – the challenge is how we aggregate data to understanding regional trends – but a lot of biodiversity data is limited, patchy, hidden data, limited capacity within nations to maintain programme, limited integration, and weak links between data collectors and policy-makers. The GEO-BON aim is to meet user needs (e.g. REDD or CBD), and they suggest the creation of essential biodiversity variables, similar to the climate change variables that are used by IPCC. It’s top down effort, the can work with bottom-up with national and regional capacity building. There are suggested 6 classes (Pereira et al, science, 2012) and the challenge is to mix remote sensing data and citizen science data to get detailed information. They identified that many of the gaps in variables can be helped by citizen science. They can consider participatory research: community based monitoring, crowdsourced citizen science (iNaturalist) and intensive research question driven (EarthWatch projects). The recommendations include that there is a need for build capacity to carry out citizen science projects, and large scale platform that will support data movement from local projects to global platforms such as GBIF. Citizen Science can contribute to monitoring protected area management – from park staff to outside visitors. The key is how to make data discoverable and shared. He demonstrated from Montane Meadows of the Sierra Nevada, where there is significant funding to restore wetlands, with only 1% of meadows studied – and remote sensing don’t give enough information, so the opportunity is to encourage people who like to visit the place to collect standardised data. EarthWatch help in developing a programme with 6 other organisations on this.
Several short talks followed:
What motivates citizens to take part in the management of an invasive non-native species? the case of tree mallow control on the islands of the Firth of Forth, Scotland –*Marie Pagès, University of Aberdeen – she looks at volunteers who are involved in dealing with invasive species. Important to understand motivation and keep people motivated. She studies an Island, and there are plants that threatens the nests of puffins, a project worked well to control the plants. The survey showed that initial involvement was a combination of interest in the environment and having a nice day outdoors in an interesting place. On going motives include seeing progress and experiencing learning about nature, but the*social dimension was critical – being with like minded people, interacting with project leaders. The implications for volunteering – the meaning and attachment to place are important to engage volunteer and maintain engagement. There is also importance in social aspect and being in nature (e.g. places that are inaccessible)
Another short talk*Understanding the motivations and satisfactions of volunteers to improve the effectiveness of citizen science programs –*Dale Wright, Birdlife South Africa – understanding the people who make monitoring *possible. Ornithology have a long history of engaging the public, and they create a project of create a bird atlas, and created psychometric instrument and with 75 questions, with looking at motivation and satisfaction, but also understand ‘ambassador potential’, with different tests. Used environmental volunteer functions inventory (EVFI) and modified it – the volunteer want to link to nature, they want to contribute to nature conservation, they wanted to see personal development. They put participants in the centre of the logic model and working around them. They developed evaluation programme and have some. Results of research are shared back with participants
The next short talk covered Citizen science in rural Africa: The conservation and monitoring of a threatened carnivore by Maasai hunters –*Stephanie Dolrenry, Lion Guardians – she talks about working in rural SA. They realised that lions are hard to study – found more dead lions that live lions. They engaged with the warriors in the Maasai who are many times killing. They asked them to collect data that they use and the participants are illiterate, and taught them to collect the data by telemetry and GPS. The worriers helped in many ways. The data that came out of the monitoring, they have the same number of researchers, but now they cover 4000 sq km with the help of the citizen scientists. They discovered much more as a result of the work, and tripled the populations, the warriors took ownership over the lions and there are societal, social and conservation outcomes – many people can name a lion and they relate to them. Number of lions decreased – the reporting is 90% accurate. (in a paper Dolreny Hazzah at all ‘citizen Science in Africa). Engaging the *worriers*in the process of tracking lions, giving them skills, providing job opportunities and prestige from using telemetry and GPS. They are paid to be guardians – once they show the opportunity, they are being compensated. They do get the participants together and report back, discussing what was seen and how to understand the outcomes.
Nature in your backyard – Citizen science in gardens –*Silvia Winter, University of Natural Resources And Life Sciences Vienna – she looks at citizen science in urban garden which are under-studied habitat but difficult to access. There are a lot of people living in cities and gardens cover large surface (8% in Vienna). They had an aim of recording biodiversity of target species – bees, butterflies, garden birds and hedgehogs . They carried out work with 16 schools wand 428 pupils, with 309 garden interview about management and structures, and they got 132 gardens that are being monitored. They have tracking tunnels to hedgehog that can be checked after 5 days for footprints. Information is then shared online in a specific site. They found hedgehogs tracks in 54% of the garden. igelimgarten.boku.ac.at
The first long talk of the second part was Promotion of biodiversity in agricultural landscape via umbrella bird species, agri-envi scheme and citizen science project: Lessons from central European country *– (Vojt
أكثر...
Citizen science online: Producing high-quality data from camera trap images (Alexandra Swanson, University of Oxford) looking at a crowdsourcing process – the growth of use of technology in conservation produce huge amount of data – images are especially an issue as they are produced from camera traps, drones etc. and difficult to analyse with computers. She describe snapshot Serengeti – in which many camera traps are used: half a million images a year. They teamed with Zooniverse to set a system for volunteer classification. The website allow people to classify without being experts, without limitation of participation other than web connection. They had 1m classifications in the first 3 days of operations. To get best data possible, each image is sent to multiple people and there is no ‘I don’t know’ so to ensure that everything is being used. Looking at multiple users we can see the level of agreement between them. When people disagree on what they’ve see, there will be high level of disagreement in their classification. The aggregate results over multiple volunteers, then they have certainty metrics (how confident the final answer is) and compare a subset with expert answers. People are 97% correct – agreement with experts’ analysis is very common. Accuracy varies by species – some species are more commonly missed (false*negative) and reported when they are not there (reported when not there). Rhinos, for example, suffer from high false positives (people want to see them). To improve classification, analysed errors against total pictures and found that rare species are harder than others – and moderate erros for these rare species is the purpose of camera trapping projects. False negatives are harder to identify. The classification by multiple users allows the development of a disagreement metric and they can see in wrong images high level of disagreement. Below the 0.75 disagreement score is 98.2% accurate. Therefore it can be used to target volunteer effort. They calculated dynamic improvement in quality as the number of classifiers increase – for more difficult images, you use more volunteers… conclusion: can dynamically target the volunteers and expert effort to make the most of the effort. Zooniverse is increasing the potential of starting new citizen science projects.
Corporate citizen science; A novel tool for tackling environmental sustainability? – (Jenny Cousins, Earthwatch Institute). *Citizen Science has multiple goals, and the interaction with the corporate sector is important for EarthWatch as they have a critical role to play in different activities. Freshwater Watch is part of a wider HSBC programme, and bring a global community of scientists and participants – 5000 citizen science (HSBC employees mostly) in 32 locations across the world. The participants fill that they are part of a global project. Employees join for a day, and then collect data every 3 months of a local freshwater locations (e.g. ponds) – they want people to be engaged and collect data, but also to think of water footprint in daily life. The data become part of local and global data – there are some aims to make the data widely available and use for academic publications and local management plans. EarthWatch evaluates how well people learn from the day, and their commitment to the project. They look at how people participate over time – including longer ‘stories’ from participants to see their journey. There are also signs of behaviour change outside work. The benefits of the partnership – funding global research programme, unique dataset, and personal and corporate outcomes. There are challenges in quality control, multi cultural aspects and continuity (only 21% continue to contribute data).*The sustainability leadership citizen science programme is 5 days immersive programme for senior staff – 1000 senior manages, with 12,000 hours of data collection and learn about climate change and how it is relevant to their work. The hope is that participants will be integrating an understanding of climate change into their work. For participants is help to connect to nature, and change their perspective on life. Working with scientists is a key to increase knowledge and awareness, and changes in behaviour personally and at corporate levels. Majority of participants led to development and implementation of sustainability strategy – reducing energy, waste, use of renewable energy etc. The challenge that they identified is how to support actions in the workplace, and they created an online community of practice to support such change. Corporate projects can be immersive and aimed at senior staff, or higher volume but less engagement. Face to face training is a key to commitment. Training does not always translate into action – so they are looking at the barriers and identifying the factors that will help making a better change. They also want to understand and measure the wider and longer term outcomes.
Local people count: Using citizen scientists to monitor fruit bat populations (Tammy Mildenstein, Cornell College) covered citizen science in the Philippines, and how data can be used. For her, citizen science has multiple goals – build capacity, increase awareness, local knowledge can help in improving programme. In the Philippines people are involved in conservation research from limited engagement*to higher level of monitoring – but only rarely in analysis. Depending on the question, can we trust citizen science data? Her case is about Flying Foxes which are largest bats, they are threatened and Old World fruit bats are not covered well in the literature. Monitoring give baseline trend information, and also identify conservation priorities, and feedback to conservation management. It also provide community-based harvest regulations (people hunt the bats) and local monitor provide the ability to manage the population. We tend to monitor to identify population trends – the power to detect is based on the population size, but we can deal with survey effort and survey error. So trying to increase survey effort and reduce the error. From 20 years of data, they compared the survey data that was gathered, and the error was calculated as difference in mean count among groups of observers, and they also compared different levels of skills – from biologists, bat hunters, to inexperienced helpers. Anyone above 4 surveys is classified as expert, forest works (hunters of workers) and everyone else. The error among experts – 2.9% error, forest workers 7.0% error and for untrained counters – almost 30% error. In terms of identifying the impact of the effort, they simulated a trend, and then simulated count assuming that they can get with these errors from different participants. Looking at the untrained participants – they realised that over longer period of monitoring, there is no error in trend detection for more experienced monitors. Conclusions: error rates to not affect much trend detection – citizen scientists help in increasing survey effort (more frequent monitoring and spatially too).
Essential Biodiversity Variables – and the emerging role of citizen science Mark Chandler (EarthWatch) – the challenge is how we aggregate data to understanding regional trends – but a lot of biodiversity data is limited, patchy, hidden data, limited capacity within nations to maintain programme, limited integration, and weak links between data collectors and policy-makers. The GEO-BON aim is to meet user needs (e.g. REDD or CBD), and they suggest the creation of essential biodiversity variables, similar to the climate change variables that are used by IPCC. It’s top down effort, the can work with bottom-up with national and regional capacity building. There are suggested 6 classes (Pereira et al, science, 2012) and the challenge is to mix remote sensing data and citizen science data to get detailed information. They identified that many of the gaps in variables can be helped by citizen science. They can consider participatory research: community based monitoring, crowdsourced citizen science (iNaturalist) and intensive research question driven (EarthWatch projects). The recommendations include that there is a need for build capacity to carry out citizen science projects, and large scale platform that will support data movement from local projects to global platforms such as GBIF. Citizen Science can contribute to monitoring protected area management – from park staff to outside visitors. The key is how to make data discoverable and shared. He demonstrated from Montane Meadows of the Sierra Nevada, where there is significant funding to restore wetlands, with only 1% of meadows studied – and remote sensing don’t give enough information, so the opportunity is to encourage people who like to visit the place to collect standardised data. EarthWatch help in developing a programme with 6 other organisations on this.
Several short talks followed:
What motivates citizens to take part in the management of an invasive non-native species? the case of tree mallow control on the islands of the Firth of Forth, Scotland –*Marie Pagès, University of Aberdeen – she looks at volunteers who are involved in dealing with invasive species. Important to understand motivation and keep people motivated. She studies an Island, and there are plants that threatens the nests of puffins, a project worked well to control the plants. The survey showed that initial involvement was a combination of interest in the environment and having a nice day outdoors in an interesting place. On going motives include seeing progress and experiencing learning about nature, but the*social dimension was critical – being with like minded people, interacting with project leaders. The implications for volunteering – the meaning and attachment to place are important to engage volunteer and maintain engagement. There is also importance in social aspect and being in nature (e.g. places that are inaccessible)
Another short talk*Understanding the motivations and satisfactions of volunteers to improve the effectiveness of citizen science programs –*Dale Wright, Birdlife South Africa – understanding the people who make monitoring *possible. Ornithology have a long history of engaging the public, and they create a project of create a bird atlas, and created psychometric instrument and with 75 questions, with looking at motivation and satisfaction, but also understand ‘ambassador potential’, with different tests. Used environmental volunteer functions inventory (EVFI) and modified it – the volunteer want to link to nature, they want to contribute to nature conservation, they wanted to see personal development. They put participants in the centre of the logic model and working around them. They developed evaluation programme and have some. Results of research are shared back with participants
The next short talk covered Citizen science in rural Africa: The conservation and monitoring of a threatened carnivore by Maasai hunters –*Stephanie Dolrenry, Lion Guardians – she talks about working in rural SA. They realised that lions are hard to study – found more dead lions that live lions. They engaged with the warriors in the Maasai who are many times killing. They asked them to collect data that they use and the participants are illiterate, and taught them to collect the data by telemetry and GPS. The worriers helped in many ways. The data that came out of the monitoring, they have the same number of researchers, but now they cover 4000 sq km with the help of the citizen scientists. They discovered much more as a result of the work, and tripled the populations, the warriors took ownership over the lions and there are societal, social and conservation outcomes – many people can name a lion and they relate to them. Number of lions decreased – the reporting is 90% accurate. (in a paper Dolreny Hazzah at all ‘citizen Science in Africa). Engaging the *worriers*in the process of tracking lions, giving them skills, providing job opportunities and prestige from using telemetry and GPS. They are paid to be guardians – once they show the opportunity, they are being compensated. They do get the participants together and report back, discussing what was seen and how to understand the outcomes.
Nature in your backyard – Citizen science in gardens –*Silvia Winter, University of Natural Resources And Life Sciences Vienna – she looks at citizen science in urban garden which are under-studied habitat but difficult to access. There are a lot of people living in cities and gardens cover large surface (8% in Vienna). They had an aim of recording biodiversity of target species – bees, butterflies, garden birds and hedgehogs . They carried out work with 16 schools wand 428 pupils, with 309 garden interview about management and structures, and they got 132 gardens that are being monitored. They have tracking tunnels to hedgehog that can be checked after 5 days for footprints. Information is then shared online in a specific site. They found hedgehogs tracks in 54% of the garden. igelimgarten.boku.ac.at
The first long talk of the second part was Promotion of biodiversity in agricultural landscape via umbrella bird species, agri-envi scheme and citizen science project: Lessons from central European country *– (Vojt
أكثر...